
1

1

Boolean and Vector Space
Retrieval Models

Many slides in this section are adapted from
Prof. Joydeep Ghosh (UT ECE) who in turn
adapted them from Prof. Dik Lee (Univ. of
Science and Tech, Hong Kong)

2

Retrieval Models

• A retrieval model specifies the details
of:
– Document representation
– Query representation
– Retrieval function

• Determines a notion of relevance.
• Notion of relevance can be binary or

continuous (i.e. ranked retrieval).

3

Classes of Retrieval Models

• Boolean models (set theoretic)

• Vector space models
(statistical/algebraic)
– Latent Semantic Indexing

• Probabilistic models

2

4

Other Model Dimensions

• Logical View of Documents
– Index terms

– Full text

– Full text + Structure (e.g. hypertext)

• User Task
– Retrieval

– Browsing

5

Common Preprocessing Steps

• Strip unwanted characters/markup (e.g. HTML
tags, punctuation, numbers, etc.).

• Break into tokens (keywords) on whitespace.
• Stem tokens to “root” words

– computational  comput

• Remove common stopwords (e.g. a, the, it, etc.).
• Detect common phrases (possibly using a domain

specific dictionary).
• Build inverted index (keyword  list of docs

containing it).

6

Boolean Model

• A document is represented as a set of
keywords.

• Queries are Boolean expressions of keywords,
connected by AND, OR, and NOT, including the
use of brackets to indicate scope.
– [[Rio & Brazil] | [Hilo & Hawaii]] & hotel & !Hilton]

• Output: Document is relevant or not. No partial
matches or ranking.

3

7

• Popular retrieval model because:
– Easy to understand for simple queries.

– Clean formalism.

• Boolean models can be extended to include
ranking.

• Reasonably efficient implementations possible for
normal queries.

Boolean Retrieval Model

8

Boolean Models  Problems

• Very rigid: AND means all; OR means any.

• Difficult to express complex user requests.

• Difficult to control the number of documents
retrieved.
– All matched documents will be returned.

• Difficult to rank output.
– All matched documents logically satisfy the query.

• Difficult to perform relevance feedback.
– If a document is identified by the user as relevant or

irrelevant, how should the query be modified?

9

Statistical Models

• A document is typically represented by a bag of
words (unordered words with frequencies).

• Bag = set that allows multiple occurrences of the
same element.

• User specifies a set of desired terms with optional
weights:
– Weighted query terms:

Q = < database 0.5; text 0.8; information 0.2 >
– Unweighted query terms:

Q = < database; text; information >
– No Boolean conditions specified in the query.

4

10

Statistical Retrieval

• Retrieval based on similarity between query
and documents.

• Output documents are ranked according to
similarity to query.

• Similarity based on occurrence frequencies of
keywords in query and document.

• Automatic relevance feedback can be supported:
– Relevant documents “added” to query.

– Irrelevant documents “subtracted” from query.

11

Issues for Vector Space Model

• How to determine important words in a document?
– Word sense?
– Word n-grams (and phrases, idioms,…)  terms

• How to determine the degree of importance of a
term within a document and within the entire
collection?

• How to determine the degree of similarity between
a document and the query?

• In the case of the web, what is the collection and
what are the effects of links, formatting
information, etc.?

12

The Vector-Space Model

• Assume t distinct terms remain after preprocessing;
call them index terms or the vocabulary.

• These “orthogonal” terms form a vector space.
Dimensionality = t = |vocabulary|

• Each term, i, in a document or query, j, is given a
real-valued weight, wij.

• Both documents and queries are expressed as
t-dimensional vectors:

dj = (w1j, w2j, …, wtj)

5

13

Graphic Representation

Example:

D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?
• How to measure the degree of

similarity? Distance? Angle?
Projection?

14

Document Collection

• A collection of n documents can be represented in the
vector space model by a term-document matrix.

• An entry in the matrix corresponds to the “weight” of a
term in the document; zero means the term has no
significance in the document or it simply doesn’t exist in
the document.

T1 T2 …. Tt

D1 w11 w21 … wt1

D2 w12 w22 … wt2

: : : :
: : : :

Dn w1n w2n … wtn

15

Term Weights: Term Frequency

• More frequent terms in a document are more
important, i.e. more indicative of the topic.

fij = frequency of term i in document j

• May want to normalize term frequency (tf) by
dividing by the frequency of the most common
term in the document:

tfij = fij / maxi{fij}

This image cannot currently be displayed.

6

16

Term Weights: Inverse Document Frequency

• Terms that appear in many different documents
are less indicative of overall topic.

df i = document frequency of term i

= number of documents containing term i

idfi = inverse document frequency of term i,

= log2 (N/ df i)

(N: total number of documents)

• An indication of a term’s discrimination power.

• Log used to dampen the effect relative to tf.

17

TF-IDF Weighting

• A typical combined term importance indicator is
tf-idf weighting:

wij = tfij idfi = tfij log2 (N/ dfi)
• A term occurring frequently in the document but

rarely in the rest of the collection is given high
weight.

• Many other ways of determining term weights
have been proposed.

• Experimentally, tf-idf has been found to work well.

18

Computing TF-IDF -- An Example

Given a document containing terms with given frequencies:

A(3), B(2), C(1)

Assume collection contains 10,000 documents and

document frequencies of these terms are:

A(50), B(1300), C(250)

Then:

A: tf = 3/3; idf = log2(10000/50) = 7.6; tf-idf = 7.6

B: tf = 2/3; idf = log2 (10000/1300) = 2.9; tf-idf = 2.0

C: tf = 1/3; idf = log2 (10000/250) = 5.3; tf-idf = 1.8

7

19

Query Vector

• Query vector is typically treated as a
document and also tf-idf weighted.

• Alternative is for the user to supply weights
for the given query terms.

20

Similarity Measure

• A similarity measure is a function that computes
the degree of similarity between two vectors.

• Using a similarity measure between the query and
each document:
– It is possible to rank the retrieved documents in the

order of presumed relevance.

– It is possible to enforce a certain threshold so that the
size of the retrieved set can be controlled.

21

Similarity Measure - Inner Product

• Similarity between vectors for the document di and query q can
be computed as the vector inner product (a.k.a. dot product):

sim(dj,q) = dj•q =

where wij is the weight of term i in document j and wiq is the weight of
term i in the query

• For binary vectors, the inner product is the number of matched
query terms in the document (size of intersection).

• For weighted term vectors, it is the sum of the products of the
weights of the matched terms.

iq

t

i
ijww

1

8

22

Properties of Inner Product

• The inner product is unbounded.

• Favors long documents with a large number of
unique terms.

• Measures how many terms matched but not how
many terms are not matched.

23

Inner Product -- Examples

Binary:
– D = 1, 1, 1, 0, 1, 1, 0

– Q = 1, 0 , 1, 0, 0, 1, 1

sim(D, Q) = 3

Size of vector = size of vocabulary = 7
0 means corresponding term not found in

document or query

Weighted:
D1 = 2T1 + 3T2 + 5T3 D2 = 3T1 + 7T2 + 1T3

Q = 0T1 + 0T2 + 2T3

sim(D1 , Q) = 2*0 + 3*0 + 5*2 = 10
sim(D2 , Q) = 3*0 + 7*0 + 1*2 = 2

24

Cosine Similarity Measure

• Cosine similarity measures the cosine of
the angle between two vectors.

• Inner product normalized by the vector
lengths.

D1 = 2T1 + 3T2 + 5T3 CosSim(D1 , Q) = 10 / (4+9+25)(0+0+4) = 0.81
D2 = 3T1 + 7T2 + 1T3 CosSim(D2 , Q) = 2 / (9+49+1)(0+0+4) = 0.13
Q = 0T1 + 0T2 + 2T3

2

t3

t1

t2

D1

D2

Q

1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using
inner product.

 



 









t

i

t

i

t

i

ww

ww

qd

qd

iqij

iqij

j

j

1 1

22

1

)(




CosSim(dj, q) =

9

25

Naïve Implementation

Convert all documents in collection D to tf-idf
weighted vectors, dj, for keyword vocabulary V.

Convert query to a tf-idf-weighted vector q.
For each dj in D do

Compute score sj = cosSim(dj, q)
Sort documents by decreasing score.
Present top ranked documents to the user.

Time complexity: O(|V|·|D|) Bad for large V & D !
|V| = 10,000; |D| = 100,000; |V|·|D| = 1,000,000,000

26

Comments on Vector Space Models

• Simple, mathematically based approach.

• Considers both local (tf) and global (idf) word
occurrence frequencies.

• Provides partial matching and ranked results.

• Tends to work quite well in practice despite
obvious weaknesses.

• Allows efficient implementation for large
document collections.

27

Problems with Vector Space Model

• Missing semantic information (e.g. word sense).

• Missing syntactic information (e.g. phrase structure,
word order, proximity information).

• Assumption of term independence (e.g. ignores
synonomy).

• Lacks the control of a Boolean model (e.g.,
requiring a term to appear in a document).
– Given a two-term query “A B”, may prefer a document

containing A frequently but not B, over a document that
contains both A and B, but both less frequently.

